Understanding Diabetes Mellitus

When Being Too Sweet Can Turn Things Sour
How Did You Learn Diabetes?

The Lists:

Hyperglycemia
- "Diabetic Coma"
 - Slow onset
 - Frequent urination
 - Thirst
 - Coma (rarely happens)
 - Dry mouth
 - Hunger
 - Abdominal pain
 - Dehydration
 - Kussmaul's respirations
 - Blurred vision
 - Rapid pulse (C-V Shock)
 - B/P low to normal
 - Weight loss
 - Fruity odor(?) keytones(?)

Hypoglycemia
- "Insulin Shock"
 - Rapid onset
 - Tachycardia (not shock)
 - Confusion/amnesia
 - Sweating
 - Headache
 - Hunger
 - Irritability/anxiety
 - Tachypnea
 - Loss of consciousness
 - Seizures
 - Coma
How Long Has Diabetes Existed?

... and how do we know?

- **Ancient Greek writings**
 - The 3 main symptoms are listed in ancient texts
 - Polyurina, Polydipsia, Polyphagia
 - Urinating, drinking, eating
 - These are the same symptoms you will look for today
What does “diabetes” mean?

• 'Passing through'
 - Polyuria

• Complete name: diabetes mellitus
 - 'Passing through the sugar'

• The ancients believed that the flesh was 'melting into the urine'

Is there another type of diabetes?

- Diabetes Insipitus
 - “Water passing through the body of unknown cause”
 - Loss of anti-diuretic hormone from pituitary gland
 - Not of pre-hospital interest
Normal Human Physiology

- Body eats food
 - Carbohydrates - Starches
 - Broken into sugars
 - Mono, di and poly-saccharides
 - Body metabolizes carbs for energy
 - Krebs citric acid cycle
 - Left over metabolic wastes
 - Water (H_2O) and Carbon Dioxide (CO_2)
Normal Human Physiology

- Carbohydrates arrive via blood stream
- Carbohydrates burned INSIDE the cell
- Carbohydrates need help passing through the cell wall
 - Helper molecule - INSULIN

![Diagram showing the process of carbohydrate metabolism](image-url)
Normal Human Physiology

- Insulin is produced in the Pancreas
 - Islets of Langerhans
 - Beta cells – insulin
 - Alpha cells – glucagon
 - Delta cells – somatostatin
 - aka ‘growth hormone-inhibiting hormone’
 - Regulates alpha and beta cells
Blood Sugar Level

- Blood sugar & insulin production oscillates throughout the day
- 'Normal' Blood Sugar Level:
 - 70–120 mg/dL
 - Insulin levels can’t really be checked
Pathophysiology of Diabetes Mellitus

- Body eats food – carbohydrates
- Sugars placed into blood
- Cell wants sugars for energy
- No Insulin – No Sugar into cell
- Sugar stays in the blood (plasma)
Pathophysiology of Diabetes Mellitus

- Sugar stays in blood
 - Blood sugar level rises
 - How high can it go?
 - 300? 600? 800? 1500? Mg/dL

- Body ejects ‘excess’ sugar through kidneys
 - Polyuria – Frequent copious urination
 - How much urine can be produced?
Pathophysiology of Diabetes Mellitus

- Body ejects ‘excess’ sugar through kidneys - **Polyuria**
- Fluid loss will be extreme
 - 1 liter+ per hour
 - Dehydration results
- Body demands WATER - **Polydipsia**
 - Extreme thirst
 - What are they drinking? Sugary drinks?
- Fluid intake can never keep up with urination
Pathophysiology of Diabetes Mellitus

- Body eats food - carbohydrates
- Cell wants sugars for energy
- No Insulin = No Sugar into cell
- Body needs FOOD - produces Hunger
 - Polyphagia
 - Consumed food never enters cells
- Starvation results
 - Loss of weight
 - Loss of energy
Pathophysiology of Diabetes Mellitus

- Body eats food - Polyphagia
- Body needs FOOD
 - No insulin . . .
 - Consumed food (glucose) can never enter the cells
- Starvation results
- **Fluid and weight loss combined**
 - Ancient Greeks believed that the flesh was melting away into the urine . . .
- The CELL (body) MUST SURVIVE
 - Alternative energy pathway needed
Pathophysiology of Diabetes Mellitus

- Alternative energy pathway
 - Cells burn FATS for energy
 - Fatty acids
 - Fats do not need insulin to enter cell
 - Body metabolizes fats for energy
 - Left over metabolic wastes -
 - Keytones and Acids
Pathophysiology of Diabetes Mellitus

• Blood chemistry changes:
 - Acids (keytones) are dumped into blood
 - pH levels drop
 - DKA Diabetic Keyto-acidosis
 - H^+ (acid) combines with bicarbonate HCO_3^-
 - Produces water (H_2O) and carbon dioxide (CO_2)
 - Acid is blown off through the lungs
 - Every CO_2 molecule eliminates one acid ion
 - ‘Tachypnea’ - but NOT short of breath!
 - Continuous sighs . . . Kussmaul’s Respiration

$H^+ (aq) + HCO_3^- (aq) \rightleftharpoons H_2CO_3(aq) \rightleftharpoons H_2O (l) + CO_2 (g)$
Pathophysiology of Diabetes Mellitus

- **Blood chemistry changes:**
 - Blood sugar rises - *HYPER-glycemia*
 - Blood becomes 'thicker'
 - Hyperosmolar state
 - Water leaves cells to dilute the high sugar levels
 - As water leaves, Potassium (K^+) leaves too
 - **Blood becomes hyperkalemic**
 - Potential for arrhythmias

![Diagram of osmosis with water and sugar molecules moving across a selectively permeable membrane.](image)
Pathophysiology of Diabetes Mellitus

Other Hyperglycemia symptoms?

- Slow onset?
 - Takes days of altered metabolism to build up changes
Other Hyperglycemia symptoms?

- Fruity/keytone smell?
 - Not detectable by everyone
Pathophysiology of Diabetes Mellitus

Other Hyperglycemia symptoms?

• Rapid pulse?
 - Patient is in a HYPOVOLEMIC state
Other Hyperglycemia symptoms?

- Altered LOC?
 - Loss of consciousness/Coma is a LATE sign
 - Occurs in only ~20% of DKAs
Pathophysiology of Diabetes Mellitus

Other Hyperglycemia symptoms?

- Abdominal Pain
 - New onset childhood Diabetes Mellitus commonly mistaken for appendicitis
Why Would Blood Sugar Rise?

1. Not taking meds
 - Insulin
 - Oral hypo-glycemic agents

2. Infection
 - Body needs to metabolize more energy & needs more insulin

3. Physiologic stresses
 - Trauma, MI

Figure 3. Pathogenesis of DKA and HHS

Stress, Infection and/or Insufficient Insulin

- Absolute Insulin Deficiency
- Counterregulatory Hormones
- Relative Insulin Deficiency

- Lipolysis
- FFA to liver
- Ketogenesis
- Alkal reserve
- Ketoadidosis
- Triglyceride
- Hyperlipidemia
- Glucose utilization
- Glycogenesis
- Glycogenolysis

- Hyperglycemia
- Hyperosmolarity
- Glycosuria (osmotic diuresis)
- Loss of water and electrolytes
- Dehydration
- Decreased fluid intake
- Impaired renal function

DKA
HHS

Adapted from ref 1.
Prehospital Treatment - HYPERRglycemia

- Fluids - dehydration is the emergency!
 - NS (wide open?)
- Cardiac Monitor
 - K+ shifts cause arrhythmias
- O₂?
 - Not necessary - tachypnea may imply a need
- Insulin?
 - No, hyperglycemia is NOT the emergency
Type 1 Diabetes

- Body produces NO insulin
- Insulin Dependent Diabetes Mellitus (IDDM)
 - “Shot controlled Diabetes”
 - “Juvenile diabetes”
Sources of Therapeutic Insulin

- Originally recovered from animals
 - Cows & Pigs (bovine and porcine)
- Human insulin now produced by bacteria
 - Lispro (Humalog)
 - Onset 5-15 min Peak 30-90 Lasts 3-4 hours
 - Regular (Novolin)
 - Onset 30 min Peak 2-3 hrs Lasts 6-8 hrs
 - NPH (Novolin-N)
 - Onset 2-4 hrs Peak 4-10 hrs Lasts 16 hrs
 - Glargine (Lantus)
 - Onset 1 hr (no peak) Lasts 24 hours
How Is Insulin Administered?

- Insulin cannot be swallowed!
 - It would be digested in the stomach
- There are no 'insulin pills'
- SQ injections
 - Abdomen & Legs
- Insulin dispensers:
 - Pumps
Insulin Pumps

- **Size of a smart phone** - Filled with quick acting insulin
 - Works like a real pancreas - basal & bolus rate
 - Small catheter under skin
- **Tighter control** - lowers BG and A1C levels
 - 1. Count carbs in meal . . .
 - 2. Take Blood glucose level . . .
 - 3. Add or subtract insulin based on BG levels
- **Pump records information** about amount of insulin administered and can be accessed in field
Continuous Glucose Monitor

- **Continuous Glucose Monitor**
 - Measures glucose in tissue fluid
 - Uses ultra thin needle under the skin – replaced every 3-7 days
 - Not yet as accurate as regular test strips
 - Must be calibrated against test strips
 - Feeds information back to recorder/pump
 - Can set off alarms to check glucose level
Type 2 Diabetes

- Non-insulin dependent diabetes mellitus NIDDM
 - “Pill controlled diabetes”
 - “Adult onset diabetes”
 - “Stable diabetes”
- Body produces SOME insulin
 But not enough
- Body has an increased resistance to insulin
- “Diet controlled Diabetes”
 - Weight controlled
Oral Hypoglycemic Agents

- Some diabetic Pills:
 - chlorpropamide (Diabinese)
 - glimepiride (Amaryl)
 - glipizide (Glucotrol, Glucotrol XL)
 - glyburide (DiaBeta, Glynase, Micronase)
 - nateglinide (Starlix)
 - repaglinide (Prandin)
 - sitagliptin (Januvia)
 - tolazamide
 - Tolbutamide
 - acarbose (Precose)
 - metformin (Glucophage)
 - miglitol (Glyset)
 - pioglitazone (Actos)
 - rosiglitazone (Avandia)
How Diabetic Pills Work

- (1) Agents which increase the amount of insulin secreted by the pancreas
 - Diabinese, Orinase (overdose?)
- (2) Agents which increase the sensitivity of target organs to insulin & increase uptake of glucose
 - Metformin, Glucophage, Avandia, Actos
- (3) Agents which decrease the rate at which glucose is absorbed from the gastrointestinal tract - Slow absorption better matches natural insulin
 - Glyset, Precose, Glucobay
 - Rare usage in USA
Type 2 Diabetic Crisis

- **Hyperglycemic hyperosmolar syndrome (HHS)**
 - Hyperglycemic hyperosmolar coma
 - Nonketotic hyperglycemic hyperosmolar coma (NKHHC)
 - Hyperosmolar nonketotic coma (HONK)

 Body produces SOME insulin.

- **Patient did not take their pills.**
 - Blood sugar rises - **HYPERglycemia**
 - Polyuria
 - Polydipsia
 - Body **CAN** still metabolize some sugars - **Body does not need to burn fats**
 - Body **DOES NOT** produce acid - **No acidosis - No Tachypnea**

 *Patient may not feel 'sick'***
Gestational Diabetes

- Diabetes only when pregnant
 - Pancreas not strong enough to support mom and baby
- “Type 2 diabetes”
 - Treatment = Insulin
 - Oral hypoglycemic agents - birth defects
 - Baby ‘porks up’ on mom’s high blood sugar
 - Large birth weight babies
- Mom may become diabetic later in life
- No increased risk of diabetic child
HYPOglycemia

- First case of Diabetic hypoglycemia – 1923
- A complication of the treatment of Diabetes:
 1. ‘Insulin’ overdose
 - Drew up wrong amount or type
 2. Taking normal insulin without eating
 - Missed meals / delayed meals
 - Travel, holidays, special events
 3. Increase exercise, physical activity, sports
Pathophysiology of Hypoglycemia

- Blood sugar drops
 - “Insulin shock”
 - Below ~65 mg/dL
- Diabetics may react at higher levels
 - Due to chronic hyperglycemia
 - (Efforts to use glycogen are not effective)
- Blood Sugar may drop to ‘zero’
Hypoglycemia – Glucagon

- **Glucagon**
 - Normal body hormone
 - 1 mg injected
- Converts liver Glycogen into Glucose
 - Glycogenolysis
Pathophysiology of Hypoglycemia

- Blood sugar drops
- CNS (brain) does not store sugar
 - Neurons are first cells affected
- Confusion, disorientation, irritability
 - Dysphoria - amnesia
 - Loss of consciousness
 - possible seizures
Hypoglycemia - Sympathetic Nervous System

- Blood sugar drops
- Body responds with only rescue system available
- **Sympathetic nervous response**
 - Epinephrine release
 - Epi attempts to release liver glycogen
 - Tachycardia - nervousness
 - Vaso-constriction
 - Sweating
- Diabetic nerve damage may blunt the SNS response
Prehospital Treatments

- Assessment shows low blood sugar . . .
- Oral sugar??
 - Glucose paste
 - 1” between cheek & gum
 - Soda pop? - Not diet soda!
 - Simple sugars quickly absorbed
 - Orange juice?
 - Complex sugars may be slower to digest
- Candy?
 - Hard candy is easy to store
 - slower to digest
Prehospital Treatment - Hypoglycemia

- Assessment shows low blood sugar:
- **50% Glucose in solution** - 50cc
 - D-50 (25 Gms of sugar)

- Administration
 - Slow IVP into large vein

- Precautions
 - Do NOT allow infiltration into tissues

- Complications
 - Tissue necrosis

- **D-50 expressed as blood sugar?**
Ways you become HYPOglycemic:

- Have you ever been hypoglycemic?
Hypoglycemia in the NON-diabetic

- Liver disease
 - Cant store glucose
 - Hepatitis?
 - Alcoholic?
- Lack of Adrenal gland function
 - Addison's disease
 - Corticosteroids
 - Low thyroid disease
 - Hypo-pituitary disease
- Pancreatic tumor
 - insulinaoma
Sugar Testing (Urine)

- Originally all blood needed to be sent to lab
 - Results could take days to weeks
- Urine was the only available out of hospital (home) test
- Clinitest® – copper sulfate reacts with sugar
 - Urine in test tube
 - Add Clinitest® tablet, wait for boiling to stop, compare color
Sugar Testing (Urine)

- **Acetest**
 - Tablets to detect Keytones
 - Darker purple means more keytones
- **Dipsticks made things easier**
 - But you were still testing urine
- Not an accurate reflection of current blood sugar level
Field *Estimation* of Blood Sugar

- Your assessment should predict the sugar level **BEFORE** any testing!
 - High, Low or Normal
- Ask pertinent questions
 - Poly, Poly, Poly?
 - LOC?
 - Abdominal pain?
 - Angry irritable behavior?
 - What were you doing before you got 'sick'?
 - Vital signs?
 - C-V shock? Tachycardia?
Field Testing of Blood Sugar

- **Blood glucose meters**
 - Take small blood sample
 - Arterial? Venus? Capillary?
 - Capillary beyond a finger?

- **Accurate testing:**
 - Follow manufacturers' instructions
 - Quality checks on machine
 - Use the ‘check/control’ solution
 - Ensure the strips are correct for the machine
 - Do the results match your assessment?
Normal Diabetic Blood Sugar

• Normal Blood Sugar = 70-120 mg/dL
• Normal Blood Sugar for a diabetic?
 - 70-120 mg/dL
 • Hypo could kill before hyper so older DM Tx has taught to keep blood sugar ‘a little high’
 • Modern DM Tx tries to keep BS no higher than 120 to avoid complications

Hemoglobin A1c test
Some glucose is bound to Hemoglobin
Reflects long term blood sugar levels
Normal 4% - 6%
Diabetic 7% or less
Long Term HYPERglycemia

- Long Term HYPER-glycemia alters cellular mitochondrial function
 - Endothelial proliferation - thickens walls of blood vessels
 - Alterations in lipid oxidation - increased blood cholesterols
 - Hypercoagulability - increase in micro clots

- All result in poor blood flow
 - Microangiopathy - capillaries
 - Macroangiopathy - arteries
How Organs Are Affected

- Organs with smallest blood vessels most at risk for damage
 - Kidneys
 - Eyes
 - Heart
 - Skin
 - Brain
 - Peripheral nerves
How Organs Are Affected

- **Kidneys**
 - Destruction of vasculature
 - Malfunction of filtration process
- #1 cause of kidney failure leading to dialysis
How Organs Are Affected

- **Eyes**
 - Thin vessels
 - Overgrow
 - Bleed
- **#1 cause of preventable blindness**

![Diabetic Retinopathy](image)

- Normal retina
- Retinopathy
- Macula
- Optic disk
- Hemorrhage
- Aneurysms
- Microaneurysms
- Hemorrhages
- Exudate
- Vitreous
- Retina
- Abnormal blood vessels
How Organs Are Affected

• Heart
• Coronary artery disease - Atherosclerosis
 - Angina
 - Ischemia
 - Infarction
• Diabetes major risk factor
How Organs Are Affected

- **Brain**
 - Inadequate perfusion leading to ischemic strokes
How Organs Are Affected

- **Peripheral nerves**
 - Poorly perfused
- **Nerves die** . . .
 - Numbness
 - Tingling
 - Lack of pain
 - No warning after injury
 - Skin breaks
 - Silent MI
 - No follow up treatment by patient
How Organs Are Affected

- Skin - Poor perfusion
 - Thinner
 - Easily torn & injured
Diabetic Amputations

- Nerve damage makes feet numb
- Injury occurs - no pain felt
- High blood sugar feeds bacteria
 - Infection worsens
- Wound poorly perfused
 - Less repair proteins
 - Few white blood cells
- Necrosis - Gangrene
- DM #1 cause of non-traumatic amputations
Diabetes and Prehospital Care

• Diabetes was once 100% fatal within weeks
 - Not understood - No treatments
• 1940s to 1970s diabetics survived but died from MI, renal failure, cancer, etc.
 - Some of these problems were caused by poor control
• Number of diabetics in society is increasing
• Greater chance of finding DM in patient's history
 - It may or may not be related to the chief complaint
 - No longer can you just “give sugar” to all diabetics

• 21st Century Paramedics must truly UNDERSTAND diabetes pathophysiology in order to provide competent pre-hospital care when.

... being too sweet can make things go sour